Critical Thinking Questions – Waste Generation and Characteristics Solutions

I. Introduction to Waste Generation and Composition

- 1. Durable and nondurable goods, containers and packaging, food wastes, wood wastes, yard trimmings.
- Quantifying waste generation is important to: (1) estimate emissions, (2) evaluate waste management-related policies, (3) track resource consumption, (4) determine compliance with federal/state diversion policies, (5) equipment selection, (6) facility design, (7) waste collection system design/planning, (8) city planning, and (9) public works budgeting. Note that additional answers may be provided.
- 3. (a) top-down approach: using production, import, and export values with estimated product life to approximate generation. The amount of waste landfilled is assumed after estimating recycling, composting, and incineration values.
 (b) Middle-up approach: state-level data are aggregated to provide national data.
 (c) Facility-based approach (bottom-up approach): aggregating tonnage and material data across the different types of facilities.
- 4. Greatest: Mississippi; Least: Connecticut.
- 5. Varies for each state
- 6. Landfilled
- 7. When landfill tipping fees are large
- 8. According to the EPA report, waste recycled/composted is mostly paper and yard trimmings. The waste landfilled is more diverse.
- 9. Answers will vary, but should include contingencies for identifying the number of loads that should be sorted, the number of categories the waste should be sorted into, the time of year/day the loads should be chosen, how the categories will be weighed, etc.

II. Generated, Landfilled, and Diverted Wastes

Problem 1:

Assumed Generated Waste: 100 lbs. Therefore, landfilled waste = 89 lbs. and Recycled Waster = 11 lbs.

Waste	Landfilled %	Landfilled	Recycled %	Recycled	Generated	% Composition of
Component	(by wt.) ^a	Mass (lb.) ^b	(by wt.) ^c	Mass (lb.) ^d	Mass (lb.) ^e	Generated Stream
Food	8	7.12	0	0	7.12	7.12
Paper	28	24.92	50	5.5	30.42	30.42
Cardboard	8	7.12	10	1.1	8.22	8.22
Plastic	9	8.01	6	0.66	8.67	8.67
Textiles	1	0.89	0	0	0.89	0.89
Rubber	0.8	0.712	0	0	0.712	0.712
Leather	0.8	0.712	0	0	0.712	0.712
YW	22	19.58	8	0.88	20.46	20.46
Wood	3	2.67	0	0	2.67	2.67
Glass	8	7.12	18	1.98	9.1	9.1
Ferrous Metal	11.4	10.146	8	0.88	11.026	11.026

Example Calculations:

^a Given

^b For food, landfilled mass: 89 $lb \times \frac{8}{100} = 7.12 \ lb$

^c Given

^d For paper, recycled mass: $11 \ lb \times \frac{50}{100} = 5.5 \ lb$ ^e For paper, generated mass: $24.92 \ lb + 5.5 \ lb = 30.42 \ lb$ ^f For paper, % Composition: $\frac{30.42 \ lb}{100 \ lb} \times 100 = 30.42$

Problem 2:

First, solve relationship for generated waste:

- Generated = landfilled + recycled
- $\quad G = L + R$
- $R = x \times G$, where 'x' is the specific recycling efficiency
- $G = L + (x \times G)$
- $G = \frac{L}{1-x}$

Next, assume 100 lbs. landfilled and solve for generated mass of each waste component

Waste Component	Landfilled Waste, % (by	Recycled Efficiency, % ^b	Mass Landfilled (lb.) ^c	Mass Generated (lb.) ^d	% Comp. of generated waste ^e
	wt.) ^a				
Food Waste	15	0	15	15	6.9
Mixed Paper	30	70	30	100	46
Glass	7	40	7	12	5.4
Plastic	5	50	5	10	4.6
Metal	3	10	3	3	1.5
Textiles	7	0	7	7	3.2
Wood	8	0	8	8	3.7
Yard Waste	25	30	25	63	28.7

Example Calculations:

^a Given

^b Given

^c Given

^d For mixed paper, landfill mass: 100 $lb \times \frac{30}{100} = 30 \, lb$

^e For mixed paper, generated mass: $\frac{30 \ lb}{1-0.7} = 100 \ lb$ ^f For mixed paper, % Composition: $\frac{100 \ lb}{217.5 \ lb} \times 100 = 46 \ lb$

Problem 3:

Part A:

Generated = landfilled waste + recycled waste Generated = 150,000,000 lb/yr [given] Recycled = 30,000,000 lb/yr $[0.2 \times 150,000,000]$ Landfilled = 120,000,000 lb/yr [150,000,000 - 30,000,000]

Component	% by wt.	Recycling Eff. (%	Landfilled Mass	Generated Mass	% Composition of
	landfilled ^a	generated) ^b	(lb/yr)°	(lb/yr) ^{d,e}	Generated Waste ^f
Food	12	0	14,400,000	14,400,000	9.6
Paper	40	30	48,000,000	68,571,429	45.7
Plastic	8	15	9,600,000	11,294,118	7.5
Glass	7	10	8,400,000	9,333,333	6.2
Metal	15	8	18,000,000	19,565,217	13
Yard Waste	0	100	0	5,235,903	3.5
Other	18	0	21,600,000	21,600,600	14.4

Example Calculations:

^a Given

^b Given

^c For food, landfill mass: $\frac{12}{100} \times 120,000,000 = 14,400,000 \ lb/yr$ ^d For paper, generated mass: $\frac{48,000,000}{1-0.3} = 68,571,429$ ^e Generated mass of yard waste = total waste generated – the generated mass of all other

components: Generated Yard Waste = 150,000,000 - 144,764,097 = 5,235,903 lb/yr

^f For paper, % Composition: $\frac{68,571,429}{150,000,000} \times 100 = 45.7\%$

Part B:

Component	Landfilled Mass (lb/yr) ^a	Waste Density (lb/yd ³) ^b	Landfilled Volume
			(yd ³ /yr) ^c
Food	14,400,000	490	29,388
Paper	48,000,000	150	320,000
Plastic	9,600,000	110	87,273
Glass	8,400,000	330	25,455
Metal	18,000,000	540	33,333
Yard Waste	0	170	0
Other	21,600,000	810	26,667

522,115 yd³/yr (Total volume landfilled each year)^d 10,442,301 volume in LF (yd³) after 20 years^e

<u>Answer:</u> $1.74 = CR^{f}$

Example Calculations:

a Given

b Take from tables provided

c For Food, landfilled volume: $\frac{14,400,000 \ lb/yr}{490 \ lb/yd^3} = 29,388 \ yd^3/yr$

d Volume placed in the landfill each year is a summation of all volumes

e Total volume placed in a landfill after 20 years: 522,155 $\frac{yd^3}{yr}$ * 20yr = 10,442,301 yd³

 $f CR: \frac{10,442,301 \ yd^3}{6,000,000 \ yd^3} = 1.74$

Problem 4:

Assume 100 lbs. of waste landfilled and calculate specific energy content of landfilled waste

Component	Composition of landfilled	Landfilled	Energy Content,	Energy (BTU) ^d
	waste (% wt.) ^a	Mass (lb) ^b	BTU/lb wet waste ^c	
Food	15	15	1,797	26,955
Mixed Paper	30	30	6,799	208,970
Glass	7	7	84	588
Plastic	5	5	14,101	70,505
Metals	3	3	301	903
Textiles	7	7	7,960	55,720
Wood	8	8	6,640	53,120
Yard Waste	25	25	2,601	65,025

^e**Total Energy** = 476,786 BTU ^f**Specific Energy Content** = 4,768 BTU/lb waste landfilled

Example Calculations:

^a Given

^b For food, landfilled mass: $\frac{15}{100} \times 100 = 15 \ lb$

^c Given

^d For food, BTU: 15 $lb \times 1797 BTU/lb waste = 26955 BTU$

^e Summation of all individual BTU values

^f Specific energy content = $\frac{476,786}{100} = 4,768 \frac{BTU}{lb waste}$

Determine total mass generated of each constituent and the specific energy content of the generated waste

Component	Individual Recycling Eff.	Generated	Energy Content	Energy (BTU) ^d
	(%, generated waste) ^a	Mass (lb) ^b	(BTU/lb) ^c	
Food	0	15	1,797	26,955
Mixed Paper	70	100	6,799	679,900
Glass	40	12	84	980
Plastic	50	10	14,101	141,010
Metals	10	3	301	1,003
Textiles	0	7	7,960	55,720
Yard Waste	60	63	2,601	162,563
Wood	0	8	6,640	53,120

^eTotal Energy = 1,121,251 BTU ^fSpecific Energy Content = 5,155 BTU/lb waste generated

Example Calculations: ^a Given ^b For paper, generated mass: $\frac{30lb}{1-0.7} = 100 \ lb$ ^c Given ^d for food, BTU: 15 $lb \times 1797 \ BTU/lb \ waste = 26,955 \ BTU$ ^e Summation of all individual BTU values ^f Specific energy content: $\frac{1,121,251 \ BTU}{217.5 \ lb} = 5,155 \ BTU/lb \ waste$

^gEnergy Reduction: 7.51

^g Energy Reduction = (Specific Energy Content of generated waste)-(Specific Energy Content of landfilled waste) (Specific Energy Content of generated waste)

III. Physical Properties of Municipal Solid Waste

Problem 1:

- 1. Assume 100 lb of wet waste
- 2. Obtain typical moisture content values
- 3. Calculate the wet and dry weights of each component

Waste Component	Composition (%,	MC (%, wet wt.)	Wet Weight (lb) ^a	Dry Weight (lb) ^b
	wt.)			
Paper	50	6	50	47
Glass	20	2	20	19.6
Food	20	70	20	6
Yard Waste	10	60	10	4
	Total Weights (lb) ^c	=	100	76.6

^dWeight of water (lb) = 23.4 lb **Total Weight** = 100 lb

 $e^{e}MC(\%) = 23.4$

Example Calculations:

^a For paper, Wet Weight: $100 \ lb \times \frac{50}{100} = 50 \ lb$ ^b For paper, Dry Weight: $50 \ lb \times 0.94 = 47 \ lb$ ^c Summation of the wet and dry weights

^d Weight of water: $100 \ lb - 76.6 \ lb = 23.4 \ lb$

 e MC = $\frac{23.4 lb}{100 lb}$ = 23.4 %

IV. Chemical Properties of Municipal Solid Waste

1. *Glossary:*

Term	Definition			
Proximate analysis	Approximate sample composition by determining: ash, moisture, fixed carbon, volatile matter			
Ultimate analysis	Quantitative analysis of elements in a sample, usually C, H, O, N, S, and ash			
HHV	Higher heating value: gross calorific value (assumes water is in the liquid phase following combustion)			
LHV	Lower heating value: net calorific value (assumes water is in the vapor state following combustion)			

2. Solution is shown below, note that all example calculations are shown in the <u>powerpoint</u> <u>file</u>.

Component	Wet Weight, g	% MC	Component	С	Η	0	Ν	S	Ash
Yard Wastes	100	40	Yard Waste	47.8	6	38	3.4	0.3	4.5

Mass of each element (g):

С	Н	0	N	S	Ash
28.68	3.6	22.8	2.04	.018	2.7

Weight of H and O:

- H: $4.4 \text{ g H} (\text{wt of moist/MW H}_2\text{O})*2$
- O: $35.6 \text{ g O} (\text{wt of moist/MW H}_2\text{O})*16$

Element	g w/o Water	g with Water
С	28.68	28.68
Н	3.6	8.04
0	22.8	58.36
N	2.04	2.04
S	0.18	0.18
Ash	2.7	2.7

Element	Atomic Wt (g/mole)	Moles, w/o Water	Moles, with Water
С	12.01	2.388	2.388
Н	1.01	3.564	7.965
0	16	1.425	3.647
N	14.01	0.146	0.146
S	32.07	0.006	0.006

	Ν	=1	S=1	l	
Element	Mole Ratio	Mole Ratio w/	Mole Ratio w/o	Mole Ratio w/	
	w/o Water	Water	water	Water	
С	16.4	16.4	425.5	425.5	
Н	24.5	54.7	635	1419.1	
0	9.8	25	253.9	649.8	
Ν	1	1	25.9	25.9	
S	0	0	1	1	

 $\frac{Normalized to N:}{With Water: C_{16}H_{55}O_{25}N_1}$ Without Water: C_{16}H_{25}O_{10}N_1 $\frac{Normalized to S:}{With Water: C_{426}H_{1419}O_{650}H_{26}S_1} \\ C_{426}H_{635}O_{254}N_{26}S$

Problem 4:

Table 1. Waste	Composition		Table 2. Cher	nical Co	mposit	tion of V	Vaste C	Compo	nents
Component	Wet Weight, g	% MC	Component	С	Ĥ	0	Ν	S	Ash
Food Waste	50	70	Food Waste	48	6.4	37.6	2.6	0.4	5
Paper	50	6	Paper	42.5	6	44	0.3	0.2	6

Solution:

Step 1: Calculate the weight of each element

Component	Wet Weight, g	% MC	Dry Weight, g	С	Н	0	Ν	S	Ash
Food Waste	50	70	15	7.2	0.96	5.64	0.39	0.06	0.75
Paper	50	6	47	20.45	2.82	20.68	0.14	0.09	2.82
TOTALS	100		62	27.65	3.78	26.32	0.53	0.15	3.57

Step 2: Calculate the weight of H and O in water

a) How much water is in this waste

i. 38 g (wet waste – dry waste)

- b) Calculate the weight of H and O in the waste
 - H: $4.2 \text{ g H} (\text{Wt of moist/MW of H}_2\text{O}) \times 2$
 - O: $33.8 \text{ g O} (\text{Wt of moist/MW of H}_2\text{O}) \times 16$

Step 3: Add the H and O to the composition found in above table

Element	g w/o Water	g with Water
С	27.65	27.65
Η	3.78	8
0	26.32	60.10
Ν	0.53	0.53
S	0.15	0.15
Ash	3.57	3.57

Element	Atomic Wt. (g/mole)	Moles, w/o Water	Moles. With Water
С	12.01	2.302	2.302
Н	1.01	3.743	7.923
0	16	1.645	3.756
Ν	14.01	0.038	0.038
S	32.07	0.005	0.005

Step 4: Determine molar composition of the elements. Ignore ash

Step 5: Normalize mole ratios

	l	N=1	S	=1
Element	Mole Ratio Mole Ratio		Mole Ratio	Mole Ratio
	w/o Water	with Water	w/o Water	with Water
С	60.7	60.7	479.3	479.3
Н	98.7	209.0	779.4	1649.9
0	43.4	99.1	342.6	782.2
Ν	1	1	7.9	7.9
S	0.1	0.1	1	1

Chemical Formula: C₄₈₀H₁₆₅₀O₇₈₂N₈S

Problem 5:

<u>Step 1:</u> Find the dry weight of the waste (Follow procedures describes previously)

Component	Wet Weight, lb	% MC	Dry Weight, lb
Food Waste	8	70	2.4
Paper	28	6.1	263
Cardboard	8	5	7.6
Plastics	9	4.4	8.6
Wood	3	60	1.2
Glass	8	2.5	7.8
Metals	11.4	1.8	11.2

Step 2: Determine the energy content of each waste component (dry solid waste weight x BTU)

Component	Dry Weight, lb	Heat Value (BTU/lb dry waste)	BTU
Food Waste	2.4	2,000	4,800
Paper	26.3	7,200	189,302
Cardboard	7.6	7,000	53,200
Plastics	8.6	14,000	120,456
Wood	1.2	8,000	9,600
Glass	7.8	60	468
Metals	11.2	300	3,358

Step 3: Calculate Specific BTU content of waste (BTU/lb)

Total Energy (BTU) ÷ *Total Waste (lb)* = 5055.5 BTU/lb