
## **Critical Thinking Questions - Anaerobic Digestion Solutions**

#### I. Introduction to Anaerobic Digestion

3.

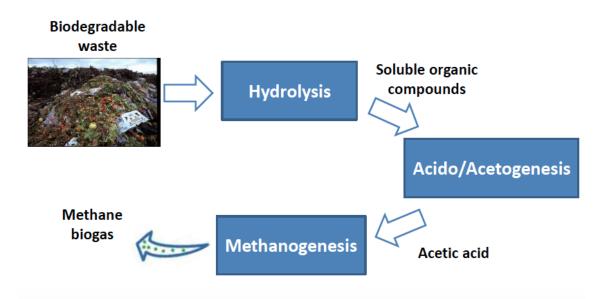
- 1. Anaerobic digestion is the biological conversion of organics that occurs in the absence of oxygen and results in the production of methane and carbon dioxide.
- 2. Candidate wastes for this process: food wastes (residential, commercial, industrial), yard trimmings. These wastes are organic and readily degradable (non-cellulosic).



- 4. Potential reasons for conducting AD: diversion from landfills; generation of biogas; meet state diversion goals; improve sustainability associated with the waste management system. Student answers will vary for the remainder of this problem.
- 5. Answers to this question may vary. Inclusion of the following factors/issues:

| Factor/Issue                        | Importance/Impact on the Process                  |
|-------------------------------------|---------------------------------------------------|
| Waste composition and mass          | Appropriate sizing and design of the facility     |
| Collection and/or separation of the | Collection system may need to be                  |
| waste components being              | designed/modified. Feasibility and economic       |
| anaerobically digested              | factors associated with this are important.       |
| Ability to use generated biogas     | Biogas is a source of revenue. Need to            |
|                                     | understand if infrastructure for its use needs to |
|                                     | be constructed /designed or modified.             |
| Economics associated with using     | Potential revenue from the process                |
| the biogas                          |                                                   |
| Type of AD system being used        | Dictates design of the digestion system           |
| Digestate use or disposal           | This is an important output of the process.       |
|                                     | Need to know what this stream will be used for    |
|                                     | or if it will be sent to a local landfill, etc.   |

6. Answers will vary.


### II. History of Current State of Anaerobic Digestion in the U.S. and Europe

 In Europe, AD is being conducted routinely, mostly due to high landfill tipping rates and policies requiring waste diversion from landfills. As of 2015, 244 AD plants were in operation. Of these facilities, 89% are stand alone, while 11% are co-digestion facilities. In the US, AD has not been used as routinely. This practice is just becoming more prevalent. As of 2016, only 29 stand-alone and 129 co-digestion AD facilities exist in the US.

## III. Overview of Anaerobic Digestion Processes

- 1.
- a. <u>Temperature</u>: Temperature is an important parameter. Temperature must be suitable for the microbial process occurring. Generally, processes are either mesophilic (68-112°F) or thermophilic (113-176°F). Lower temperatures during the process are known to decrease microbial growth, substrate utilization rates, and biogas production. Lower temperatures may also result in an exhaustion of cell energy, a leakage of intracellular substances or complete lysis. High temperatures lower biogas yield due to the production of volatile gases such as ammonia, which suppresses methanogenic activities.
- b. <u>Nutrients:</u> These are required for microbial processes to be sustained. Lack of nutrients will ultimately result in microbial processes ceasing.
- c. <u>Toxic compounds:</u> Presence of these compounds may disrupt the microbial processes.





| Term           | Definition                                                                                                                                                                                               |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrolysis     | Conversion of solid waste organics to simple sugars and<br>amino acids. This is the rate-limiting step of the digestion of<br>refractory materials such as fruit peels. Wood debris and<br>green wastes. |
| Anaerobic      | In the absence of oxygen                                                                                                                                                                                 |
| Aerobic        | In the presence of oxygen                                                                                                                                                                                |
| Autotroph      | Microorganism that uses inorganic carbon as a carbon source                                                                                                                                              |
| Chemotroph     | Obtain energy from the oxidation of electron donors                                                                                                                                                      |
| Phototroph     | Uses light as an energy source to carry out cellular metabolic processes                                                                                                                                 |
| Heterotroph    | Uses organic carbon as the carbon source                                                                                                                                                                 |
| Fermentation   | Occurs under anaerobic conditions during which organic<br>molecules serve as both electron donors and electron<br>acceptors                                                                              |
| Methanogenesis | Generation of methane                                                                                                                                                                                    |
| Mesophilic     | Temperature range: 68-112°F                                                                                                                                                                              |
| Thermophilic   | Temperature range: 113-176°F                                                                                                                                                                             |

#### IV. Anaerobic Digestion Biogas Production

1.

<u>Step 1:</u>

Use the following table to determine the chemical formula of the food waste.

| Component   | С    | Н   | 0    | N   | S    | Ash  |
|-------------|------|-----|------|-----|------|------|
| Food Waste  | 48   | 6.4 | 37.6 | 2.6 | 0.4  | 5    |
| Paper       | 43.5 | 6   | 44   | 0.3 | 0.2  | 6    |
| Cardboard   | 44   | 5.9 | 44.6 | 0.3 | 0.2  | 5    |
| Plastics    | 60   | 7.2 | 22.8 | 0   | 0    | 10   |
| Textiles    | 55   | 6.6 | 31.2 | 4.6 | 0.15 | 2.5  |
| Rubber      | 78   | 10  | 0    | 2   | 0    | 10   |
| Leather     | 60   | 8   | 11.6 | 10  | 0.4  | 10   |
| Yard Wastes | 47.8 | 6   | 38   | 3.4 | 0.3  | 4.5  |
| Wood        | 49.5 | 6   | 42.7 | 0.2 | 0.1  | 1.5  |
| Inorganic   | 0.5  | 0.1 | 0.4  | 0.1 | 0    | 98.9 |

Molecular Weight = 1,781 g/mole

#### <u>Step 2:</u>

Recognize that stoichiometry can be used to calculate moles of CH4 generated/mole food waste, which can then be converted to m3 CH4/tonne of food waste

Stoichiometric Relationship:

$$C_a H_b O_c N_d + \left(\frac{4a-b-2c+3d}{4}\right) H_2 O \rightarrow \left(\frac{4a+b-2c-3d}{8}\right) C H_4 + \left(\frac{4a-b+2c+3d}{8}\right) C O_2 + dN H_3$$

- Moles of CH<sub>4</sub>/mole food waste = 
$$\left(\frac{4a+b-2c-3d}{8}\right)$$

- Plugging in values =  $\left(\frac{(4 \times 22) + 173 (2 \times 83) (3 \times 1)}{8}\right) = 11.5$  moles CH4/mole food waste
- Convert moles food waste to mass food waste:

$$\frac{11.5 \text{ moles } CH_4}{1 \text{ mole food waste}} = 0.0065 \frac{\text{moles } CH_4}{g \text{ food waste}}$$

- Convert this to m<sup>3</sup> CH<sub>4</sub>/tonne of food waste:

Note the following conversions: 1 tonne = 1,000,000g = 1 Mg At STP, 22.4 L/mole of Gas 1 m<sup>3</sup> = 1000 L =  $0.0065 \frac{moles CH_4}{g food waste} \times \frac{1,000,000 g}{tonne} \times \frac{22.4 L}{mole gas} \times \frac{1 m^3}{1000 L}$ 

$$= 144.6 \frac{m^3 C H_4}{tonne food waste}$$

 $\frac{\text{Step 3:}}{\text{Already calculated the volume of CH4/tonne food waste. Now calculate the volume of CO2/tonne of food waste.}$ 

Moles of CO<sub>2</sub>/mole food waste = 
$$\left(\frac{4a-b+2c+3d}{8}\right)$$
Plugging in values:  $\left(\frac{(4 \times 22)-173+(2 \times 83)+(3 \times 1)}{8}\right) = 10.5 \text{ moles } \frac{CO_2}{moles} food$ 
Convert moles food waste to mass food waste:
$$\frac{10.5 \text{ moles } CH_4}{1 \text{ mole food waste } \times \left(\frac{1,781 \text{ g food waste}}{mole food waste}\right)} = 0.0059 \text{ moles } \frac{CO_2}{g \text{ food waste}}$$
Convert this to m<sup>3</sup> CO<sub>2</sub>/tonne of food waste:
Note the following conversions:
I tonne = 1,000,000g = 1 Mg
At STP, 22.4 L/mole of Gas
I m<sup>3</sup> = 1000 L
= 0.0059  $\frac{moles CO_2}{g \text{ food waste}} \times \frac{1,000,000 \text{ g}}{tonne} \times \frac{22.4 \text{ L}}{mole \text{ gas}} \times \frac{1 \text{ m}^3 CO_2}{1000 \text{ L}}$ 
= 132.1  $\frac{m^3 CO_2}{tonne \text{ food waste}}$ 
Add the CO<sub>2</sub> and CH<sub>4</sub> volumes:
 $\frac{144.6 \text{ m}^3 CH_4}{tonne \text{ food waste}} + \frac{132.1 \text{ m}^3 CO_2}{tonne \text{ food waste}} = \frac{276.7 \text{ m}^3 \text{ gas}}{tonne \text{ food waste}}$ 
Multiply by the mass of food waste
 $276.7 \text{ m}^3 \frac{gas}{tonne \text{ food waste}}} \times 1 \text{ tonne food waste} = 276.7 \text{ m}^3 \text{ biogas}$ 

### Determination of the electricity generated from the AD of organics.

## <u>Step 1:</u>

- Only the methane fraction of the biogas can be used to generate electricity. Calculate the total volume of methane:

$$\frac{144.6 m^{3} C H_{4}}{tonne \ food \ waste} \times 1 \ tonne \ food \ waste = 144.6 m^{3} C H_{4}$$

<u>Step 2:</u>

- Gas collection efficiencies are generally high during AD. There may be some small losses, generally ranging from 0-10% (ref 1). Therefore, collection efficiencies range from 90-100%.
- Conversion efficiencies of CH4 to electricity may range from:
  - 20 40% (based on ref 2)
- Conversions/relationships to know:

Energy Content of Methane = 55.5 kJ/kg  
1 kWh = 3.6 
$$\times$$
 10<sup>6</sup> J  
Density of methane = 0.656kg/m<sup>3</sup>

## <u>Step 3:</u>

- Determine the fraction of methane available for conversion to electricity (assume a collection efficiency of 98%):

$$=144.6 m^{3} CH_{4} \times 0.98$$
$$= 141.7 m^{3} CH_{4}$$

- Determine the electricity that can be generated, accounting for the conversion efficiency (assume a conversion efficiency of 20%):

$$= 141.7 \ m^{3}CH_{4} \times 0.2 \times \frac{55 \ kJ}{kg \ CH_{4}} \times \frac{0.656 \ kg}{m^{3}} \times \frac{1 \ kWh}{3.6 \times 10^{6} \ J} \times \frac{1000 \ J}{kJ}$$
$$= 0.28 \ kWh$$

# Table 1. Waste Composition

| Component   | Wet Weight, g | %MC |
|-------------|---------------|-----|
| Food Waste  | 0             | 70  |
| Paper       | 100           | 6   |
| Cardboard   | 0             | 5   |
| Plastics    | 0             | 0   |
| Textiles    | 0             | 0   |
| Rubber      | 0             | 0   |
| Leather     | 0             | 0   |
| Yard Wastes | 0             | 0   |
| Wood        | 0             | 0   |
| Inorganic   | 0             | 0   |

# Table 2. Chemical Composition of Waste Components

| Component   | С    | Н   | 0    | Ν   | S    | Ash  |
|-------------|------|-----|------|-----|------|------|
| Food Waste  | 48   | 6.4 | 37.6 | 2.6 | 0.4  | 5    |
| Paper       | 43.5 | 6   | 44   | 0.3 | 0.2  | 6    |
| Cardboard   | 44   | 5.9 | 44.6 | 0.3 | 0.2  | 5    |
| Plastics    | 60   | 7.2 | 22.8 | 0   | 0    | 10   |
| Textiles    | 55   | 6.6 | 31.2 | 4.6 | 0.15 | 2.5  |
| Rubber      | 78   | 10  | 0    | 2   | 0    | 10   |
| Leather     | 60   | 8   | 11.6 | 10  | 0.4  | 10   |
| Yard Wastes | 47.8 | 6   | 38   | 3.4 | 0.3  | 4.5  |
| Wood        | 49.5 | 6   | 42.7 | 0.2 | 0.1  | 1.5  |
| Inorganic   | 0.5  | 0.1 | 0.4  | 0.1 | 0    | 98.9 |

#### Solution:

| Component   | Wet Weight, | %MC | Dry Weight,<br>g | С     | Н    | 0     | N    | S    | ASH  |
|-------------|-------------|-----|------------------|-------|------|-------|------|------|------|
| Food Waste  | 0           | 70  | 0                | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| Paper       | 100         | 6   | 94               | 40.89 | 5.64 | 41.36 | 0.28 | 0.19 | 5.64 |
| Cardboard   | 0           | 5   | 0                | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| Plastics    | 0           | 0   | 0                | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| Textiles    | 0           | 0   | 0                | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| Rubber      | 0           | 0   | 0                | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| Leather     | 0           | 0   | 0                | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| Yard Wastes | 0           | 0   | 0                | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| Wood        | 0           | 0   | 0                | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |
| TOTALS:     | 100         |     | 94               | 40.89 | 5.64 | 41.36 | 0.28 | 0.19 | 5.64 |

Step 1: Calculate weight of each element

Step 2: Calculate the weight of H and O in water

- How much water is in the waste?
  - 6 g (Wet waste Dry waste)
- Calculate the weight of H and O in the waste
  - $\circ$  H: 0.667 g H --- (weight of Moisture/MW H<sub>2</sub>O) x 2
  - O: 5.333 g O --- (weight of Moisture/MW of H<sub>2</sub>O) x 16

<u>Step 3:</u> Add the H and O to the composition found in the table above:

| Element | g, w/o water | g, w/ water |
|---------|--------------|-------------|
| С       | 40.89        | 40.89       |
| Н       | 5.64         | 6.31        |
| 0       | 41.36        | 46.69       |
| Ν       | 0.28         | 0.28        |
| S       | 0.19         | 0.19        |
| ASH     | 5.64         | 5.64        |

<u>Step 4:</u> Determine the molar composition of the elements, neglect ash

| Element | Atomic Wt | Moles, w/o water | Moles, w water |
|---------|-----------|------------------|----------------|
| С       | 12.01     | 3.405            | 3.405          |
| Н       | 1.01      | 5.584            | 6.244          |
| 0       | 16        | 2.585            | 2.918          |
| N       | 14.01     | 0.020            | 0.020          |
| S       | 32.07     | 0.006            | 0.006          |

Step 5: Normalize mole rations

|         | N=1                  |          | S=1                  |          |
|---------|----------------------|----------|----------------------|----------|
| Element | Mole Ratio w/o Water | w/ water | Mole Ratio w/o Water | w/ water |
| С       | 169.1                | 169.1    | 580.8                | 580.8    |
| Н       | 277.4                | 310.2    | 952.6                | 1065.2   |
| 0       | 128.4                | 145.0    | 441.0                | 497.8    |
| N       | 1.0                  | 1.0      | 3.4                  | 3.4      |
| S       |                      |          | 1.0                  | 1.0      |

#### Use the chemical composition to determine the volume of CH<sub>4</sub> produced from paper

From chemical formula, we know the following:

 $\begin{array}{rll} a = & 169.0 \\ b = & 310.0 \\ c = & 145.0 \\ d = & 1.0 \end{array}$ 

Molecular weight = 4676.8 g/mole

- Use the anaerobic degradation equation:

$$C_a H_b O_c N_d + \left(\frac{4a - b - 2c + 3d}{4}\right) H_2 O \rightarrow \left(\frac{4a + b - 2c - 3d}{8}\right) C H_4 + \left(\frac{4a - b + 2c + 3d}{8}\right) C O_2 + dN H_3$$

moles of CH<sub>4</sub> generated/moles MSW = 86.6moles of CH<sub>4</sub> generated/g MSW = 0.01852228Assuming STP, m<sup>3</sup> CO<sub>2</sub>/g MSW = 0.000415

Total Volume of gas  $(m^3)/g$  MSW = 0.000809

Mass of MSW: 1000.00 g

Assuming 100% biodegradation:

 $0.809 \text{ m}^3 \text{ of biogas}$ 

moles of CO<sub>2</sub> generated/moles MSW = 82.4moles of CO<sub>2</sub> generated/g MSW = 0.0176Assuming STP, m<sup>3</sup> CO<sub>2</sub>/g MSW = 0.000395 1 Mg/week of an organic waste stream with composition listed below

| Waste Component | Composition of waste (%, by weight) |
|-----------------|-------------------------------------|
| Food Waste      | 80                                  |
| Paper           | 10                                  |
| Cardboard       | 10                                  |

\*assume 90% of organics biodegrade

#### Find:

- a) Methane potential of this waste (m<sup>3</sup>/tonne waste)
  b) Volume (m<sup>3</sup>) of biogas generated from one year worth of waste
  c) Electricity (kWh) generated from one year worth of waste

#### **Solution:**

1) Determining the Chemical Composition of Solid Waste

| Table 1. Waste Composition |                |      |  |  |  |
|----------------------------|----------------|------|--|--|--|
| Component                  | Wet Weight (g) | % MC |  |  |  |
| Food Waste                 | 80             | 6    |  |  |  |
| Paper                      | 10             | 6    |  |  |  |
| Cardboard                  | 10             | 6    |  |  |  |
| Plastics                   | 0              | 0    |  |  |  |
| Textiles                   | 0              | 0    |  |  |  |
| Rubber                     | 0              | 0    |  |  |  |
| Leather                    | 0              | 0    |  |  |  |
| Yard Wastes                | 0              | 0    |  |  |  |
| Wood                       | 0              | 0    |  |  |  |
| Inorganics                 | 0              | 0    |  |  |  |

| Table 2. Cher | Table 2. Chemical Composition of Waste Components |     |      |     |     |      |  |  |
|---------------|---------------------------------------------------|-----|------|-----|-----|------|--|--|
| Component     | C                                                 | Н   | 0    | Ν   | S   | Ash  |  |  |
| Food Waste    | 48                                                | 6.4 | 37.6 | 2.6 | 0.4 | 5    |  |  |
| Paper         | 43.5                                              | 6   | 44   | 0.3 | 0.2 | 6    |  |  |
| Cardboard     | 44                                                | 5.9 | 44.6 | 0.3 | 0.2 | 5    |  |  |
| Plastics      | 60                                                | 7.2 | 22.8 | 0   | 0   | 10   |  |  |
| Textiles      | 55                                                | 6.6 | 31.2 | 4.6 | 0.2 | 2.5  |  |  |
| Rubber        | 78                                                | 10  | 0    | 2   | 0   | 10   |  |  |
| Leather       | 60                                                | 8   | 11.6 | 10  | 0.4 | 10   |  |  |
| Yard Wastes   | 47.8                                              | 6   | 38   | 3.4 | 0.3 | 4.5  |  |  |
| Wood          | 49.5                                              | 6   | 42.7 | 0.2 | 0.1 | 1.5  |  |  |
| Inorganic     | 0.5                                               | 0.1 | 0.4  | 0.1 | 0   | 98.9 |  |  |

| Component  | Wet Weight<br>(g) | %MC | Dry Weight<br>(g) | С     | Н    | 0     | N    | Н    | Ash  |
|------------|-------------------|-----|-------------------|-------|------|-------|------|------|------|
| Food Waste | 80                | 70  | 24                | 11.52 | 1.54 | 9.02  | 0.62 | 0.10 | 1.20 |
| Paper      | 10                | 6   | 9.4               | 4.09  | 0.56 | 4.14  | 0.03 | 0.02 | 0.56 |
| Cardboard  | 10                | 5   | 9.5               | 4.18  | 0.56 | 4.24  | 0.03 | 0.02 | 0.48 |
| Plastics   | 0                 | 0   | 0                 | 0     | 0    | 0     | 0    | 0    | 0    |
| Textiles   | 0                 | 0   | 0                 | 0     | 0    | 0     | 0    | 0    | 0    |
| Rubber     | 0                 | 0   | 0                 | 0     | 0    | 0     | 0    | 0    | 0    |
| Leather    | 0                 | 0   | 0                 | 0     | 0    | 0     | 0    | 0    | 0    |
| Yard Waste | 0                 | 0   | 0                 | 0     | 0    | 0     | 0    | 0    | 0    |
| Wood       | 0                 | 0   | 0                 | 0     | 0    | 0     | 0    | 0    | 0    |
| Totals:    | 100               |     | 42.9              | 19.79 | 2.66 | 17.40 | 0.68 | 0.13 | 2.27 |

Step 1: Calculate the weight of each element

Step 2: Calculate the weight of H and O in water:

a) How much water is in this waste? 57.1g (wet waste – dry waste)

- b) Calculate the weight of H and O in the waste
  - H:  $6.344 \text{ g H} (\text{Weight of Moisture/MW H}_2\text{O}) \ge 2$
  - O:  $50.75 \text{ g O} (\text{Weight of Moisture/MW H}_2\text{O}) \times 16$

Step 3: Add H and O to the composition found in table above

| Element | g w/o waster | g w/ water |
|---------|--------------|------------|
| С       | 19.79        | 19.79      |
| Н       | 2.66         | 9.00       |
| 0       | 17.40        | 68.15      |
| Ν       | 0.68         | 0.68       |
| S       | 0.13         | 0.13       |
| ASH     | 2.24         | 2.24       |

<u>Step 4:</u> determine the molar composition of the elements. Neglect ash

| Element | Atomic Weight | Moles w/o water | Moles w/ water |
|---------|---------------|-----------------|----------------|
| С       | 12.01         | 16.48           | 1.648          |
| Н       | 1.01          | 2.634           | 8.916          |
| 0       | 16            | 1.087           | 4.260          |
| Ν       | 14.01         | 0.049           | 0.049          |
| S       | 32.07         | 0.004           | 0.004          |

Step 5: Normalize mole ratios

|         | Ν                     | N=1      | S          | =1         |
|---------|-----------------------|----------|------------|------------|
| Element | Mole Ratio Mole Ratio |          | Mole ratio | Mole Ratio |
| Element | w/o water             | w/ water | w/o water  | w/ water   |
| С       | 33.9                  | 33.9     | 394.9      | 394.9      |
| Н       | 54.2                  | 183.5    | 631.4      | 2137.0     |
| 0       | 22.4                  | 87.7     | 260.6      | 1021.0     |
| N       | 1.0                   | 1.0      | 11.6       | 11.6       |
| S       |                       |          | 1.0        | 1.0        |

Use the chemical composition to determine the methane potential and volume

- From the chemical formula, we know the following:

$$\begin{array}{rrrr} a=& 34.0\\ b=& 184.0\\ c=& 88.0\\ d=& 1.0 \end{array}$$

Molecular Weight= 2016.2 g/mole

- Use the anaerobic degradation equation:  

$$C_a H_b O_c N_d + \left(\frac{4a-b-2c+3d}{4}\right) H_2 O \rightarrow \left(\frac{4a+b-2c-3d}{8}\right) CH_4 + \left(\frac{4a-b+2c+3d}{8}\right) CO_2 + dNH_3$$
  
Moles of CH4 = 17.6 Moles CO<sub>2</sub> generated/moles MSW = 16.4  
generated/Moles MSW  
Moles CH<sub>4</sub> generated/g = 0.00874 Moles CO<sub>2</sub> generated/g MSW = 0.00812  
MSW  
Assuming STP, m<sup>3</sup> CH<sub>4</sub>/g =0.000196 Assuming STP, m<sup>3</sup> CO<sub>2</sub>/g MSW = 0.000182  
MSW

**Part a)** Methane Potential =  $195.8 \text{ m}^3$ /tonne of waste

| Total Mass Generated=         | 1.00  | Mg/week |
|-------------------------------|-------|---------|
| 7 days/week and 365 days/year | 52.14 | Mg/year |

90% of waste biodegrades

Part b)

| Biodegradable Mass =       | 46.928      | Mg/year                  |
|----------------------------|-------------|--------------------------|
|                            | 46928571.43 | g/year                   |
| Assuming STP, $m^3 CO_2 =$ | 17726.9     | m <sup>3</sup> of biogas |

| Part c)                                |     |
|----------------------------------------|-----|
| Gas Collection Efficiency =            | 95% |
| Conversion Efficiency to electricity = | 20% |

## kWh Generated = 17.498

4.

Given:

- 1,000 Mg/year of waste to their landfill
- They are considering diverting a fraction of their currently landfilled food waste to a newly constructed AD unit
- The fraction of this waste stream that is food is 20%

### Find:

Construct a graph that illustrates how the fraction of diverted food correlates with energy production (kWh/year)

## Solution:

## **Determining the chemical composition of Solid Waste**

| Table 1.    | Table 1. Waste Composition |     |  |  |  |  |  |  |
|-------------|----------------------------|-----|--|--|--|--|--|--|
| Component   | Wet Weight (g)             | %MC |  |  |  |  |  |  |
| Food Waste  | 1                          | 70  |  |  |  |  |  |  |
| Paper       | 0                          | 6   |  |  |  |  |  |  |
| Cardboard   | 0                          | 5   |  |  |  |  |  |  |
| Plastics    | 0                          | 0   |  |  |  |  |  |  |
| Textiles    | 0                          | 0   |  |  |  |  |  |  |
| Rubber      | 0                          | 0   |  |  |  |  |  |  |
| Leather     | 0                          | 0   |  |  |  |  |  |  |
| Yard Wastes | 0                          | 0   |  |  |  |  |  |  |
| Wood        | 0                          | 0   |  |  |  |  |  |  |
| Inorganic   | 0                          | 0   |  |  |  |  |  |  |

| Table 2. Chemical Composition of Waste Components |      |     |      |     |     |     |  |  |
|---------------------------------------------------|------|-----|------|-----|-----|-----|--|--|
| Component                                         | С    | Η   | 0    | Ν   | S   | Ash |  |  |
| Food Waste                                        | 48   | 6.4 | 37.6 | 2.6 | 0.4 | 5   |  |  |
| Paper                                             | 43.5 | 6   | 44   | 0.3 | 0.2 | 6   |  |  |
| Cardboard                                         | 44   | 5.9 | 44.6 | 0.3 | 0.2 | 5   |  |  |
| Plastics                                          | 60   | 7.2 | 22.8 | 0   | 0   | 10  |  |  |
| Textiles                                          | 55   | 6.6 | 31.2 | 4.6 | 0.2 | 2.5 |  |  |
| Rubber                                            | 78   | 10  | 0    | 2   | 0   | 10  |  |  |
| Leather                                           | 60   | 8   | 11.6 | 10  | 0.4 | 10  |  |  |
| Yard Waste                                        | 47.8 | 6   | 38   | 3.4 | 0.3 | 4.5 |  |  |
| Wood                                              | 49.5 | 6   | 42.7 | 0.2 | 0.1 | 1.5 |  |  |

| Component   | Wet<br>Weight<br>(g) | %MC | Dry Weight (g) | С    | Н    | 0    | N    | S    | Ash  |
|-------------|----------------------|-----|----------------|------|------|------|------|------|------|
| Food Waste  | 1                    | 70  | 0.3            | 0.14 | 0.02 | 0.11 | 0.01 | 0.00 | 0.02 |
| Paper       | 0                    | 6   | 0              | 0    | 0    | 0    | 0    | 0    | 0    |
| Cardboard   | 0                    | 5   | 0              | 0    | 0    | 0    | 0    | 0    | 0    |
| Plastics    | 0                    | 0   | 0              | 0    | 0    | 0    | 0    | 0    | 0    |
| Textiles    | 0                    | 0   | 0              | 0    | 0    | 0    | 0    | 0    | 0    |
| Rubber      | 0                    | 0   | 0              | 0    | 0    | 0    | 0    | 0    | 0    |
| Leather     | 0                    | 0   | 0              | 0    | 0    | 0    | 0    | 0    | 0    |
| Yard Wastes | 0                    | 0   | 0              | 0    | 0    | 0    | 0    | 0    | 0    |
| Wood        | 0                    | 0   | 0              | 0    | 0    | 0    | 0    | 0    | 0    |
| Totals:     | 1                    |     | 0.3            | 0.14 | 0.02 | 0.11 | 0.01 | 0.00 | 0.02 |

Step 1: Calculate the weight of each element

Step 2: Calculate the weight of H and O in water

- a) How much water is in this waste? 0.7 g (wet weight dry weight)
- b) Calculate the weight of H and O in the waste
  - H:  $0.0778 \text{ g H} (\text{Wt of moist/MW H}_2\text{O}) \ge 2$
  - O: 0.6222 g O (Wt of moist/MW H<sub>2</sub>O) x 16

Step 3: Add H and O to the composition found in above table

| Element | (g) w/o water | (g) w/ water |
|---------|---------------|--------------|
| С       | 0.14          | 0.14         |
| Н       | 0.02          | 0.10         |
| Ο       | 0.11          | 0.74         |
| N       | 0.01          | 0.01         |
| S       | 0.00          | 0.00         |
| ASH     | 0.02          | 0.02         |

Step 4: Determine the molar composition of the elements. Neglect ash

| Element | Atomic Weight | Moles, w/o water | Moles, w/ water |
|---------|---------------|------------------|-----------------|
| С       | 12.01         | 0.012            | 0.012           |
| Н       | 1.01          | 0.019            | 0.096           |
| 0       | 16.00         | 0.007            | 0.046           |
| N       | 14.01         | 0.001            | 0.001           |
| S       | 32.07         | 0.000            | 0.000           |

Step 5: Normalize mole ratios

|         | N=1                     |          | S=1                     |         |
|---------|-------------------------|----------|-------------------------|---------|
| Element | Mole Ratio w/o<br>Water | w/ water | Mole Ratio w/o<br>water | w/water |
| С       | 21.5                    | 21.5     | 320.4                   | 320.4   |
| Н       | 34.1                    | 172.5    | 508.0                   | 2566.1  |
| 0       | 12.7                    | 82.5     | 188.4                   | 1227.7  |
| N       | 1.0                     | 1.0      | 14.9                    | 14.9    |
| S       |                         |          | 1.0                     | 1.0     |

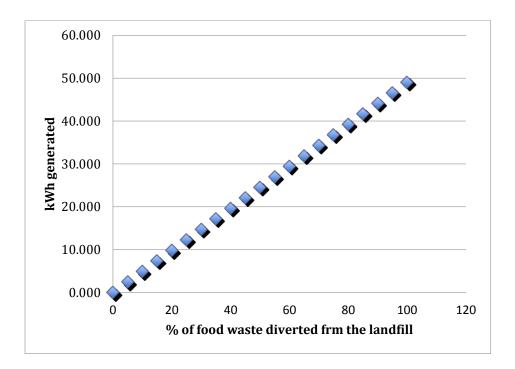
## Use the chemical composition to determine the volume of CH<sub>4</sub> produced

From Chemical formula, we know the following:

 $\begin{array}{rrrr} a=&22.0\\ b=&172.0\\ c=&83.0\\ d=&1.0 \end{array}$ 

Molecular Weight= 1780.0 g/mole

Use anaerobic respiration equation:


$$C_a H_b O_c N_d + \left(\frac{4a - b - 2c + 3d}{4}\right) H_2 O \rightarrow \left(\frac{4a + b - 2c - 3d}{8}\right) C H_4 + \left(\frac{4a - b + 2c + 3d}{8}\right) C O_2 + d N H_3$$

| Moles CH <sub>4</sub> generated/moles MSW=           | 11.4     |
|------------------------------------------------------|----------|
| Moles CH <sub>4</sub> generated/g MSW=               | 0.00639  |
| Assuming STP, m <sup>3</sup> CH <sub>4</sub> /g MSW= | 0.000143 |

<u>Step 3:</u> Construct the graph

| Total Mass of food waste generated each year = | 200 Mg |
|------------------------------------------------|--------|
| Assume:                                        |        |
| Fraction of food waste that biodegrades        | 90%    |
| completely =                                   |        |
| Gas collection efficiency =                    | 95%    |
| Conversion efficiency to electricity =         | 20%    |
|                                                |        |

| % of Waste | Mass of Waste | Mass of Diverted Waste that | kWh       |
|------------|---------------|-----------------------------|-----------|
| Diverted   | Diverted (Mg) | Biodegradres (Mg)           | Generated |
| 0          | 0             | 0                           | 0.000     |
| 5          | 10            | 9                           | 2.453     |
| 10         | 20            | 18                          | 4.907     |
| 15         | 30            | 27                          | 7.360     |
| 20         | 40            | 36                          | 9.813     |
| 25         | 50            | 45                          | 12.267    |
| 30         | 60            | 54                          | 14.720    |
| 35         | 70            | 63                          | 17.173    |
| 40         | 80            | 72                          | 19.626    |
| 45         | 90            | 81                          | 22.080    |
| 50         | 100           | 90                          | 24.533    |
| 55         | 110           | 99                          | 26.986    |
| 60         | 120           | 108                         | 29.440    |
| 65         | 130           | 117                         | 31.893    |
| 70         | 140           | 126                         | 34.346    |
| 75         | 150           | 135                         | 36.800    |
| 80         | 160           | 144                         | 39.253    |
| 85         | 170           | 153                         | 41.706    |
| 90         | 180           | 162                         | 44.160    |
| 95         | 190           | 171                         | 46.613    |
| 100        | 200           | 180                         | 49.066    |



# V. <u>Types of Anaerobic Digestion Systems</u>

| 1.                   |                                                                                                                                                                                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term                 | Definition                                                                                                                                                                                        |
| Low-solids AD        | These systems are generally wet AD systems in which the MSW is diluted and contain < 15% total solids.                                                                                            |
| High-solids AD       | These systems are generally dry AD systems that contain > 20% total solids                                                                                                                        |
| Dry AD               | No additional liquid is added to the digestion process                                                                                                                                            |
| Wet AD               | Additional moisture (e.g., wastewater, fresh water) is added to the digestion process                                                                                                             |
| Single stage AD      | Digestion occurs in one reactor                                                                                                                                                                   |
| Mulit-stage AD       | Digestion occurs in steps: 1. hydrolysis/fermentation and 2. methanogenesis                                                                                                                       |
| Organic loading rate | Mass of volatile solids added per volume-day                                                                                                                                                      |
| Process Water        | Water from the digestion process                                                                                                                                                                  |
| Batch reactor        | Non-continuous process in which materials are placed into a reactor as a single mass or batch. Upon completion of the digestion process, the digested mass is removed. A new batch is then added. |
| Continuous reactor   | Flow of feedstock into the digester occurs continuously.                                                                                                                                          |

2. Answers will vary.